教授

当前位置: 首 页 >> 学院概况 >> 师资队伍 >> 教授 >> 正文

王发根

 

Description: 照片1

职称

研究员

邮箱

fagen.wang@gmail.com;fagenwang@messianic-prophecy.net

研究方向

多能量场的催化反应过程;

纳米()材料的能源催化;环境催化;

 

个人履历

男,工学博士,研究员,博导。主要从事多能量场的催化反应过程、纳米()材料的能源催化以及环境催化的研究工作。以第一作者和通讯作者在国内外学术刊物发表相关研究论文30余篇,均为被SCI收录,其中高被引论文3篇,热点论文1篇。

 

教育经历

2005/09-2013/01,乐鱼体育科学院大连化学物理研究所,催化基础国家重点实验室,博士

2008/10-2012/10,法国里昂催化与环境研究所,博士

2001/09-2005/07 中南乐鱼体育,化学化工学院,学士

工作经历

2016/06-至今,乐鱼体育,青年特聘教授,研究员

2014/10-2016/06,苏州工业园区新国大研究院,副研究员

2013/10-2014/10,新加坡国立乐鱼体育,博士后

研究方向

1. 室内甲醛污染物的低室温净化纳米催化材料制备及应用

2. 甲烷高效利用及二氧化碳转化应用基础研究

3. 甲醇、乙醇等低碳醇类的水汽重整制氢光热催化剂研究

研究论文

[1]    L. Zhao, M. Tang, F. Wang*, X. Qiu*, Efficient Cu/CeO2 composites for hydrogen production from photothermal methanol steam reforming: The utility of synergism of photo and thermal catalysis, Fuel 2023, 331, 125748.

[2]    Y. Shi, K. Han, F. Wang*, Ni-Cu Alloy Nanoparticles Confined by Physical Encapsulation with SiO2 and Chemical Metal-Support Interaction with CeO2 for Methane Dry Reforming, Inorganic Chemistry 2022, 61, 15619-15628.

[3]    S. Wang, K. Han, Z. Deng*, F. Wang*, CeO2 Nanorods Decorated with Pt Nanoparticles as Catalysts for Oxidative Elimination of Formaldehyde, ACS Applied Nano Materials 2022, 5, 10036-10046.

[4]    K. Han, S. Wang, N. Hu, W. Shi*, F. Wang*, Alloying Ni-Cu Nanoparticles Encapsulated in SiO2 Nanospheres for Synergistic Catalysts in CO2 Reforming with Methane Reaction, ACS Applied Materials & Interfaces 2022, 14, 23487-23495.

[5]    L. Wang, F. Wang*, Design Strategy, Synthesis and Mechanism of Ni Catalysts for Methane Dry Reforming reaction: Recent Advances and Future Perspectives, Energy & Fuels 2022, 36, 5594-5621. (Invited Review)

[6]    S. Wang, W. Yu, S. Xu, K. Han, F. Wang*, Ammonia from Photothermal N2 Hydrogenation over Ni/TiO2 Catalysts under Mild Conditions, ACS Sustainable Chemistry & Engineering 2022, 10, 115-123.

[7]    S. Wang, Y. Wang, F. Wang*, Room temperature HCHO oxidation over the Pt/CeO2 catalysts with different oxygen mobilities by changing ceria shapes, Applied Catalysis A: General 2022, 630, 118469.

[8]    K. Han, S. Xu, Y. Wang, S. Wang, L. Zhao, J. Kambonde, H. Yu*, W. Shi*, F. Wang*, Confining Ni and ceria in silica shell as synergistic multifunctional catalyst for methane dry reforming reaction, Journal of Power Sources 2021, 506, 230232

[9]    K. Han, S. Wang, Q. Liu*, F. Wang*, Optimizing the Ni/Cu Ratio in Ni-Cu Nanoparticle Catalysts for the Methane Dry Reforming, ACS Applied Nano Materials 2021, 4, 5340-5348.

[10] K. Han, Y. Wang, S. Wang, Q. Liu, Z. Deng*, F. Wang*, Narrowing band gap energy of CeO2 in (Ni/CeO2)@SiO2 catalyst for photothermal methane dry reforming, Chemical Engineering Journal 2021, 421, 129989.

[11] F. Wang*, K. Han, L. Xu, H. Yu*, W. Shi, Ni/SiO2 catalyst prepared by strong electrostatic adsorption for low temperature methane dry reforming reaction, Industrial & Engineering Chemistry Research 2021, 60, 3324-3333.

[12] K. Han, W. Shu, L. Xu, Z. Deng*, H. Yu*, F. Wang*, Reducing carbon deposition and enhancing reaction stability by ceria for methane dry reforming over Ni@SiO2@CeO2 catalyst, Fuel 2021, 291, 120182.

[13] C. Xin, F. Wang*, G. Q. Xu*, Tuning surface V5+ concentration in M1 phase MoVSbOx catalysts for ethylene production from ethane through oxidative dehydrogenation reaction, Applied Catalysis A: General 2021, 610, 117946.

[14] F. Wang*, K. Han, W. Yu, L. Zhao, Y. Wang, X. Wang, H. Yu*, W. Shi*, Low Temperature CO2 Reforming with Methane Reaction over CeO2-Modified Ni@SiO2 Catalysts, ACS Applied Materials & Interfaces 2020, 12, 35022-35034.

[15] Y. Wang, F. Wang*, K. Han, W. Shi, H. Yu*, Ultra-small CeO2 nanoparticles supported on SiO2 for indoor formaldehyde oxidation at low temperature, Catalysis Science & Technology 2020, 10, 6701-6712.

[16] F. Wang*, Y. Wang, K. Han, H. Yu*, Efficient elimination of formaldehyde over Pt/Fe3O4 catalyst at room temperature, Journal of Environmental Chemical Engineering 2020, 8, 101041.

[17] B. Han, L. Zhao, F. Wang*, L. Xu, H. Yu, Y. Cui, J. Zhang, W. Shi*, Effect of calcination temperature on performance of Ni@SiO2 catalyst in methane dry reforming, Industrial & Engineering Chemistry Research 2020, 59, 13370-13379

[18] B. Han, F. Wang*, L. Zhang, Y. Wang, W. Fan, L. Xu, Y. Hao*, Z. Li, Syngas production from methane steam reforming and dry reforming reactions over sintering-resistant Ni@SiO2 catalyst, Research on Chemical Intermediates 2020, 3, 1735-1748.

[19] F. Wang*, Y. Wang, L. Zhang, J. Zhu, B. Han, W. Fan, L. Xu, H. Yu, W. Cai, Z. Li, Z. Deng*, W. Shi*, Performance enhancement of methane dry reforming reaction for syngas production over Ir/Ce0.9La0.1O2-nanorods catalysts, Catalysis Today 2020, 355, 502-511.

[20] L. Zhang, F. Wang*, J. Zhu, B. Han, W. Fan, L. Zhao, W. Cai, Z. Li. L. Xu, H. Yu, W. Shi*, CO2 reforming with methane reaction over Ni@SiO2 catalysts coupled by size effect and metal-support interaction, Fuel 2019, 256, 115954.

[21] F. Wang*, L. Zhang, J. Deng, M. Zhang, B. Han, Y. Wang, Z. Li, H. Yu, W. Cai, Z. Deng*, Embedded Ni catalysts in Ni-O-Ce solid solution for stable hydrogen production from ethanol steam reforming reaction, Fuel Processing Technology 2019, 193, 94-101.

[22] F. Wang*, L. Zhang, J. Zhu, B. Han, L. Zhao, H. Yu, Z. Deng*, W. Shi*, Study on different CeO2 structure stability during ethanol steam reforming reaction over Ir/CeO2 nanocatalysts, Applied Catalysis A: General 564 (2018) 226-233.

[23] F. Wang*, B. Han, L. Zhang, L. Xu, H. Yu, W. Shi*, CO2 reforming with methane over small-sized Ni@SiO2 catalysts with unique features of sintering-free and low carbon, Applied Catalysis B: Environmental 235 (2018) 26-35.

[24] F. Wang*, L. Xu, W. Shi, J. Zhang, K. Wu, Y. Zhao, H. Li, H.X. Li, G.Q. Xu*, W. Chen*, Thermally stable Ir/Ce0.9La0.1O2 catalyst for high temperature methane dry reforming reaction, Nano Research 10 (2017) 364-380.

[25] F. Wang*, L. Zhang, L. Xu, W. Shi*, Low temperature CO oxidation and CH4 combustion over Co3O4 nanosheets, Fuel 203 (2017) 419-429.

[26] F. Wang*, L. Xu, J. Yang, J. Zhang, L. Zhang, H. Li, Y. Zhao, H. . Li, K. Wu, G. Q. Xu*, W. Chen*, Enhanced catalytic performance of Ir catalysts supported on ceria-based solid solutions for methane dry reforming reaction, Catalysis Today 281 (2017) 295-303.

[27] F. Wang*, L. Xu, J. Zhang, Y. Zhao, H. Li, H. X. Li, K. Wu, G. Q. Xu*, W. Chen*, Tuning the metal-support interaction in catalysts for highly efficient methane dry reforming reaction, Applied Catalysis B: Environmental 180 (2016) 511-520.

[28] F. Wang*, L. Xu, W. Shi*, Syngas production from CO2 reforming with methane over core-shell Ni@SiO2 catalysts, Journal of CO2 Utilization 16 (2016) 318-327.

[29] F. Wang*, K. Zhao, H. Zhang, Y. Dong, T. Wang, D. He*, Low temperature CO catalytic oxidation over supported Pd-Cu catalysts calcined at different temperatures, Chemical Engineering Journal 242 (2014) 10-18.

[30] F. Wang*, Y. Xu, K. Zhao, D. He*, Preparation of Palladium Supported on Ferric Oxide Nano-catalysts for Carbon Monoxide Oxidation in Low Temperature, Nano-Micro Letters 6 (2014) 233-241.

[31] F. Wang, W. Cai, C. Descorme, H. Provendier, W. Shen, C. Mirodatos*, Y. Schuurman, From mechanistic to kinetic analyses of ethanol steam reforming over Ir/CeO2 catalyst, International Journal of Hydrogen Energy 39 (2014) 18005-18015.

[32] F. Wang*, H. Zhang, D. He*, Catalytic oxidation of low-concentration CO at ambient temperature over supported Pd-Cu catalysts, Environmental Technology 35 (2014) 347-354.

[33] F. Wang, W. Cai, Tana, H. Provendier, Y. Schuurman, C. Descorme, C. Mirodatos*, W. Shen*, Ageing analysis of a model Ir/CeO2 catalyst in ethanol steam reforming, Applied Catalysis B: Environmental 125 (2012) 546-555.

[34] F. Wang, W. Cai, H. Provendier, Y. Schuurman, C. Descorme, C. Mirodatos*, W. Shen*, Hydrogen production from ethanol steam reforming over Ir/CeO2 catalysts: Enhanced stability by PrOx promotion, International Journal of Hydrogen Energy 36 (2011) 13566-13574.

[35] F. Wang, Y. Li, W. Cai, E. Zhan, X. Mu, W. Shen*, Ethanol steam reforming over Ni and Ni-Cu catalysts, Catalysis Today 146 (2009) 31-36.

 

授权专利

[1] 王发根, 何丹农, 一种铈镨复合氧化物纳米颗粒和纳米棒的制备方法, 发明专利,乐鱼体育,授权号:ZL201310437577. 4.

[2] 王发根, 何丹农, 一种氧化钯复合氧化物催化剂及其制备方法与应用, 发明专利,乐鱼体育,授权号:ZL201310439997. 6.

[3] 王发根, 刘爽, 董亚梅, 王婷, 何丹农, 一种具有双功能的一氧化氮氧化催化剂及其制备方法, 发明专利,乐鱼体育,授权号:ZL201310264820.7.

承担项目

[1]    全面覆盖全球的体育博彩平台面上项目,20211-202412月,主持,在研

[2]    太原理工乐鱼体育开放基金,20231-202412月,主持,在研

[3]    乐鱼体育科学院重点实验室开放基金,20211-202212月,主持,在研

[4]    全面覆盖全球的体育博彩平台青年基金,20161-201812月,主持,结题

[5]    江苏省自然科学基金,20177-20206月,主持,结题

[6]    江苏省资助博士后研究人员项目201710-202010月,主持,结题

[7]    乐鱼体育博士后科学基金特别资助,20181-201912月,主持,结题

[8]    乐鱼体育博士后科学基金面上项目20181-201912月,主持,结题

[9]    江苏乐鱼体育人才启动基金,20171-202112月,主持,结题